
PRGA: An Open-Source FPGA Research and
Prototyping Framework

Ang Li
angl(at)princeton(dot)edu

Princeton University
Princeton, New Jersey

David Wentzlaff
wentzlaf(at)princeton(dot)edu

Princeton University
Princeton, New Jersey

ABSTRACT
Field Programmable Gate Arrays (FPGA) are being used in a fast-
growing range of scenarios, and heterogeneous CPU-FPGA systems
are being tapped as a possible way to mitigate the challenges posed
by the end of Moore’s Law. This growth in diverse use cases has
fueled the need to customize FPGA architectures for particular
applications or application domains. While high-level FPGAmodels
can help explore the FPGA architecture space, as FPGAs move to
more advanced design nodes, there is an increased need for low-
level FPGA research and prototyping platforms that can be brought
all the way to fabrication.

This paper presents Princeton Reconfigurable Gate Array
(PRGA), a highly customizable, scalable, and complete open-source
framework for building custom FPGAs. The framework’s core func-
tions include generating synthesizable Verilog from user-specified
FPGA architectures, and providing a complete, auto-generated,
open-source CAD toolchain for the custom FPGAs. Developed in
Python, PRGA provides a user-friendly API and supports use both
as a standalone FPGA as well as an embedded FPGA. PRGA is a
great platform for FPGA architecture research, FPGA configuration
memory research, FPGA CAD tool research, and heterogeneous
systems research. It is also a completely open-source framework
for designers who need a free and customizable FPGA IP core. An
FPGA designed with PRGA is placed and routed using standard
cell libraries. The design is evaluated and compared to prior works,
providing comparable performance and increased configurability.

CCS CONCEPTS
• Hardware→ Reconfigurable logic and FPGAs.

KEYWORDS
FPGA; FPGA architecture; open-source hardware
ACM Reference Format:
Ang Li and David Wentzlaff. 2021. PRGA: An Open-Source FPGA Research
and Prototyping Framework. In Proceedings of the 2021 ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA ’21), February
28-March 2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3431920.3439294

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439294

1 INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have become an in-
creasingly important tool to enable application performance in
a post Moore’s Law [19] world. Whether they are being used as
a standalone compute fabric or a supplement to processors at the
chip-level [8, 10, 29], board-level [20], system-level, or datacenter-
level [1, 5], the diversity of use cases and importance of FPGAs
have been increasing. Ideally, an FPGA architecture should be op-
timized for each unique use case. In practice, though, it is very
challenging to evaluate different FPGA designs in detail and even
more challenging and time-consuming to prototype and bring those
FPGAs to fabrication. This is because FPGA chip design flow has
diverged from the design flows of other digital ASICs like pro-
cessors. Commercial FPGAs are often designed with custom cells
and specialized EDA tools that are publicly unavailable. Likewise,
each unique FPGA requires the creation of customized CAD tools.
Due to this high design cost, commercial FPGA vendors typically
offer a limited set of designs optimized across common, but poten-
tially non-characteristic, use cases. Due to similar reasons, FPGA
architecture studies often use and stop at high-level models [4, 21].

To facilitate FPGA architecture research and enable designs op-
timized for custom applications, tools are needed to evaluate, opti-
mize, and prototype FPGA architectures all the way down to the
fabrication level. An ideal framework would be easy-to-use, exten-
sible, scalable, and open-source. A framework that provides synthe-
sizable RTL enables gate-level or transistor-level implementation
using commercial ASIC design flows and standard cell libraries. By
enabling such physical prototyping, a framework can be used to
evaluate timing, power, and area with the utmost fidelity. Likewise,
RTL-level prototyping incorporates the details of the configuration
memory, enabling research on bitstream format and partial or dy-
namic reconfiguration. High-level modeling tools are an important
first step, but there exists a need for low-level (RTL and below)
frameworks that can be used to study low-level issues such as
floorplanning, design regularity, signal integrity, and other physical
design issues all while providing the path to then take the optimized
design through prototyping and fabrication.

In this paper, we present Princeton Reconfigurable Gate
Array (PRGA), a highly customizable, scalable, and complete
open-source framework for building custom FPGAs. PRGA is
available at https://parallel.princeton.edu/prga. Fig. 1 shows
the workflow used to design a custom FPGA and then develop an
application that uses it. The PRGA FPGA architecture is highly
customizable, and it supports user-provided modules such as SRAM
macros, hard arithmetic units, and routing switches, all of which
can be easily added into the flow. PRGA is developed in Python and
provides a well-defined Python API. Extensions are encouraged and

https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://parallel.princeton.edu/prga

Figure 1: Overview of a typical PRGA workflow

supported through modularization and low-level APIs. To further
lower the barrier of extending the framework, most output files
are generated from human-readable Jinja [25] templates that are
customizable without changing the Python codebase. At the end of
the FPGA design flow, PRGA produces human-readable, industry-
standard, Verilog files that are synthesizable and physically imple-
mentable using commercial EDA Tools. PRGA is ASIC-friendly and
can be used to generate standalone FPGAs as well as embedded
FPGAs, where the customization that PRGA provides is critical.

PRGA is not derived from prior FPGA modeling/exploration
tools. Therefore, it is not restricted by the internal representations
of legacy tools. This enables PRGA to support flexible hierarchies
that match physical implementation needs. Likewise, the generated
configuration circuitry is highly flexible and is decoupled from the
design hierarchy, opening up the ability for researchers to explore
novel configuration strategies (order, storage, and topology) which
is a key component to building efficient FPGAs. Such physical-
aware customizability is critical to the design of large-scale, high-
performance, fabrication-ready FPGAs.

In addition to designing the FPGA itself, PRGA offers a complete
HDL-to-bitstream solution using open-source CAD tools, config-
uring and parameterizing those FPGA implementation CAD tools
for the created custom FPGA. Specifically, this flow uses Yosys [28]
for technology mapping and synthesis, VPR [21] for place & route,
FASM [23] for raw bitstream generation, and a custom bitstream
generator to convert the raw bitstream into binary format. The
target application can be verified by simulation with various levels
of abstraction throughout the flow, making it easy to debug both
the FPGA itself and the application. Scripts and data files for the
same FPGA are reusable across application development runs.

In summary, the key features of PRGA include:
• Architecture Customizability
(1) Fully-customizable, heterogeneous logic blocks: LUT count,

LUT size, local interconnect, hard adder chains, multi-modal
primitives, logic elements, and more.

(2) Bring-Your-Own-IP: block RAM, hardened multiplier/accu-
mulator, and even big IP cores like CPUs, memory/network
controllers, etc.

(3) Fully-customizable routing structure: switch box pattern,
connection box pattern, non-uniform channel, long wires,
and global wires.

(4) Extensible configuration circuitry: simple scanchain-based
configuration or complex, NoC-based, packetized bitstreams

with support for partial reconfiguration. Custom configura-
tion circuitry can also be designed using low-level API.

• CAD Support
(1) Auto-generated Yosys script for synthesis: BRAM inference,

hard logic techmap, and post-synthesis simulation.
(2) Auto-generated, FASM-annotated VPR inputs for place-

ment, routing and raw bitstream generation.
• ASIC Compatibility
(1) Bring-Your-Own-Circuits: replace generated modules with

custom Verilog modules or hard macros.
(2) ASIC-friendly module hierarchy: fracturable switch box

to maximize regularity; arbitrary levels of sub-arrays to
balance ASIC QoR and ease-of-backend.

• Framework Extensibility
(1) Modularized, pass-based workflow. Passes may be added

or modified without affecting the rest of the flow.
(2) Core data structure can be serialized to disk. Tools don’t

need to rerun the entire building process every time.
In this paper, we evaluate PRGA by characterizing its scalability

in terms of memory usage and runtime and find that it enables
the creation of very large designs with reasonable computational
resources. In addition, we take a design through place and route to
tape-in quality to show that PRGA is production-ready. Finally, we
compare designs created with PRGA with prior and commercial
designs in terms of area and delay, and show that we are competitive
with other standard-cell-based FPGA generators.

PRGA enables many exciting applications. It is a great platform
for FPGA architecture research, in particular bridging the gap from
high-level FPGA architecture exploration tools down to low-level
implementation details, as well as enabling RTL-in-the-loop FPGA
architecture optimization studies. It can also be used to build targets
for FPGA CAD tool research, for example, security-aware place-
and-route tools. PRGA is a framework that allows the creation and
exploration of many different FPGA designs, which makes it more
than an FPGA generator that can only generate a certain type of
FPGA. The FPGAs built with PRGA can be used either as standalone
FPGAs or integrated into SoCs. It can even be an excellent platform
for CPU-FPGA heterogeneous system research.

2 PRGAWORKFLOW
Fig. 1 shows an overview of a typical PRGA workflow. The FPGA
design flow is driven by a user-written Python script, while theHDL-
to-bitstream flow integrates open-source CAD tools to generate
valid bitstreams for the created custom FPGA.

Figure 2: FPGA architecture modeled by PRGA. The position, shape and size of the modules do not reflect the physical prop-
erties in an ASIC implementation. Programmable connections are shown as many-to-one connections in routing boxes and
blocks. 1○ are bridging nets discussed in Sec. 3.3.3; 2○ is an unroutable clock pin directly connected to the global clock tree.

2.1 Database Preparation
PRGA offers various basic components for building an FPGA, includ-
ing look-up tables (LUT) and registers. However, it is common that
FPGA designers want to add custom components into the design,
for example, SRAM macros, hard arithmetic units, or even complex
IP cores such as memory controllers. These components are clas-
sified as Logic Primitives in PRGA and elaborated in Sec. 3.3.1.
During the database preparation step, users can add custom Logic
Primitives by creating proper models for them, whether they are
hard macros or synthesizable HDL designs.

2.2 Architecture Customization
After database preparation, the users can build the desired custom
FPGA architecture by creating programmable blocks and assem-
bling them in a hierarchical manner, as shown in Fig. 2. In summary,
the top level of the hierarchy is a 2-dimensional Array composed of
Tiles, Switch Boxes, and nested Arrays. Each Tile contains one
Logic Block or multiple IO Blocks, in addition to various num-
bers of Connection Boxes. Logic Blocks and IO Blocks consist
of zero to many Slices and Logic Primitives. Last but not least,
Slices are composed of nested Slices and Logic Primitives.
Each of these modules will be discussed in detail in Sec. 3.

One key feature of PRGA is the decoupling of the functional
abstraction of the FPGA, the underlying configuration circuitry,
and the physical implementation of the circuits. During architecture
customization, FPGA designers can focus on describing the logical
function and connectivity, and leave the implementation details to
later steps that are independently customizable. For example, to
create a configurable connection in a Logic Block, users do not
need to explicitly specify how the MUX tree should be constructed,
or the order of the configuration bits for the MUXes.

The high customizability of PRGA opens up a huge design space
for exploration, which is critical to architecture researchers and
experienced FPGA designers with specific needs. On the other hand,
to make this highly flexible framework easy to use for new users,
PRGA provides abundant built-in algorithms to ease the generation
of decent FPGAs from meta parameters. For example, while routing
boxes are customizable on a per-wire, per-connection basis, various
default algorithms are provided for populating them, including
Fc-based Connection Box patterns [4], Universal [6], Wilton [27],
and Cycle-Free [15] Switch Box patterns, etc.

2.3 Transformation and Generation Passes
PRGA does all the heavy-lifting work through transformation and
generation passes. The passes shown in Fig. 1 are the most com-
monly used ones:

Configuration Circuitry Insertion expands the functional, abstract
description of the FPGA by elaborating the configuration circuitry
and implementing the configurable connectionswith programmable
switches. The configuration circuitry does not need to match the
logical design hierarchy. Typically, each type of configuration cir-
cuitry has its own implementation of this pass.

Synthesis Script Generation discovers all the logical resources
available in the FPGA, then generates technology mapping and
synthesis scripts for mapping applications onto the custom FPGA.

Place and Route Script Generation generates the XML files needed
by VPR [21] to place and route for the FPGA. To accurately model
the highly customizable routing resources, PRGA generates the
Routing Resource Graph XML in addition to the Architecture Descrip-
tion XML. PRGA uses FASM [23] for raw bitstream generation, so
additional annotations are added to the XML files accordingly.

RTL Generation generates industry-standard, human-readable,
synthesizable Verilog files for the FPGA. As mentioned in Sec. 1,
PRGA uses Jinja [25] for text file generation, and the templates can
be changed without affecting the rest of PRGA.

Passes may be bound to specific execution order constraints,
depend on other passes, or conflict with each other. For example,
RTL Generation depends on Configuration Circuitry Insertion to
fill in the physical implementations of the abstract architecture
specifications, while Configuration Circuitry Insertion passes for
different types of configuration circuitry conflict with each other.
Graph analysis algorithms are applied to determine the correct
execution order of passes, making it easier to add or modify passes.
In addition to these built-in passes, users are encouraged and well-
supported to add their own passes to optimize, analyze and create
custom reports for their custom FPGAs.

2.4 ASIC Implementation
PRGA is designed and optimized with a strong emphasis on en-
abling gate-/transistor-level prototyping or even fabrication, espe-
cially as a target of modern ASIC design flow using commercial
EDA tools and standard cell libraries. Common ASIC implementa-
tion techniques are taken into consideration during RTL generation.

For example, the configuration enable signal is registered at dif-
ferent levels across the hierarchy to reduce potential skew of this
high-fanout net. In addition, the flexible hierarchy and customizable
RTL generation grant FPGA designers the freedom to explore and
optimize the layout strategy specific to their process and design.

2.5 Application Development and Verification
All the files required by the open-sourceHDL-to-bitstream toolchain
are generated by the generation passes in the FPGA design flow,
and they can be reused across different runs of the application de-
velopment and verification flow. Furthermore, PRGA offers various
executable Python scripts for generating the Verilog testbenches,
constraints, and Makefiles to automate the flow. A valid and verified
bitstream is thus only a few commands away from the HDL inputs.

With the RTL-level model of the FPGA, we can simulate the
FPGA from power-on reset, bitstream loading, all the way to appli-
cation emulation. This Emulation-over-Simulation approach offers
great fidelity of the architecture, and simplifies debugging both the
FPGA and the application. Moreover, after pushing the RTL through
an ASIC implementation flow, we can run gate-/transistor-level
simulation with more accurate timing and power characteristics.

3 ARCHITECTURE
In this section, we describe PRGA’s highly flexible and customizable
architecture.

3.1 Routing Resources
PRGA currently supports straight, uni-directional routing tracks,
global nets, and direct inter-block wires. Routing tracks, also called
wire segments, are grouped by length in the unit of logical tiles. By
default, PRGA fills every routing channel in the custom FPGA with
all groups of tracks. However, if certain tracks are not driven by any
Switch Box or Connection Box, they are depopulated from the spe-
cific routing channel, enabling per-wire, per-channel customization.
We intentionally dropped support for bi-directional routing tracks
because they are not compatible with common ASIC implementa-
tion flows, and they are no longer used in newer generations of
commercial FPGAs either. Global nets and direct inter-block wires
(Tunnels in PRGA’s terminology) are non-programmable routing
resources. Global nets are typically used for clock or reset trees,
while Tunnels are usually used to implement fast carry-chains.

3.2 Views
As outlined in Sec. 2.2, PRGA decouples the logical abstraction,
configuration circuitry, and physical implementation of the FPGA
to maximize modularization. This is achieved by using different
Views, a concept borrowed from the EDA world, at different steps
throughout the FPGA design flow:

The Abstract View offers a high-level abstraction of the archi-
tecture. It is primarily used during the architecture customization
and CAD script generation steps.

The Design View is usually the output of the Configuration
Circuitry Insertion pass, implementing the Abstract View specified
by users. Synthesizable Verilog can be generated from this view.

The Physical View offers more flexibility over the Design View
and is primarily reserved for extensions. One typical use of this

(a) Two modes in Abstract View

(b) Design View implemented with the Scanchain
configuration circuitry. Mode selection bit high-
lighted with red box and arrow.

Figure 3: Different views of a fracturable LUT3 which can be
used as one single LUT3, or two LUT2s with shared inputs.

view is to generate RTL files for ASIC implementation, which are
different from those used in simulation.

3.3 Hierarchy and Customizability
In this section, we dive into how PRGA organizes the hierarchy of
the FPGA architectures and show the customizability of each level
in the hierarchy.

3.3.1 Logic Primitive. Also known as logic elements or logic re-
sources, Logic Primitives are the building blocks of FPGAs. In
PRGA, all hard logic that is targeted by technology mapping and
synthesis are categorized as Logic Primitives, including but not
limited to LUTs, flip-flops, hard arithmetic units, SRAM macros, or
even complex IP cores like memory controllers.

Logic Primitives are further classified into three types:

• Non-Programmable primitives, e.g., simple flip-flops.
• Programmable primitives, e.g., LUTs. The functions provided
by these primitives are altered by configuration.

• Multi-Modal primitives, e.g., fracturable LUTs. These prim-
itives can be configured to one of its many modes, each
offering a unique function. Multi-modal primitives are not
directly targeted by synthesis. Instead, logical primitives em-
ulated by its various modes are targeted by synthesis, then
matched with the corresponding mode during packing.

Ideally, we would like to design primitives in a configuration-
agnostic manner to maximize reusability and extensibility. Unfortu-
nately, this is not always feasible. For example, LUTRAM, one mode
of a LUT which can be used as a RAM, requires the capability of
writing to the underlying configuration memory. Addressing this
issue, PRGA exploits the views as discussed in Sec. 3.2. PRGA uses
the Abstract View to specify the logical function of a primitive,
and uses the Design View for the actual implementation. Fig. 3
shows the two Abstract Views and one Design View of a "fracr-
turable" LUT3, which can be used as one single LUT3, or two LUT2s
with shared inputs.

All three types of primitives are customizable in PRGA. Non-
programmable primitives can be easily added by creating new
Logic Primitive objects with their interfaces and Verilog source
files. Programmable primitives can be added in a similar way, only
that an additional Design View matching the selected configu-
ration circuitry is required. Multi-modal primitives require more
hands-on development: Each mode of a multi-modal primitive is
similar to a Slice in the Abstract View. A Design View imple-
menting all the different modes and the mode-selection mechanism
specific to the selected configuration circuitry is also required.

3.3.2 Slice, Logic Block, and IO Block. Slices (also called ALMs
or clusters), Logic Blocks, and IO Blocks are modules built upon
Logic Primitives, as shown in Fig. 2 (c). The purpose of these
modules are three-fold: For the FPGA CAD tools, they serve as the
targets for packing aswell as routing terminals for place & route; For
RTL-level simulation, they serve as hierarchical wrappers around
Logic Primitives, making the latter easier to monitor and debug;
For ASIC implementation, they can be designed as the lowest-level
physical block and reused across the chip, minimizing performance
variation across block instances.

Logic Blocks may be logically wide, tall, or both, spanning
across multiple tiles. It is also configurable if routing tracks are
allowed to run through or over these large blocks. This logical size
only affects the topology of the routing resources around it, andmay
mismatch the physical size or shape in the ASIC implementation.

3.3.3 Connection Box and Switch Box. Routing boxes are catego-
rized into two classes in PRGA: Connection Boxes that connect
routing tracks to the pins of Logic Blocks and IO Blocks; and
Switch Boxes that connect routing tracks to other routing tracks.

By default, each side (north, east, south, and west) of a block
needs a Connection Box, although it is very common to omit some
Connection Boxes when there are no routable pins on certain
sides of a block. Fig. 2 (c) shows an example where Connection
Boxes are only needed on the east and west side of the Logic Block.
Creatingmore Connection Boxes for the same side of a block is also
supported, enabling fine-grained customization around different
instances of the same block. For tall and wide blocks, the number
of Connection Boxes needed on each side is equal to the width or
height of the block.

Switch Boxes are modeled in a highly flexible way. As shown
in Fig. 2 (a) & (b), each corner (northeast, northwest, southeast,
and southwest) in a tile fits one Switch Box, allowing up to 4
Switch Boxes wherever routing channels cross, although it’s not
necessary to fill all corners. No limit is set on the number of distinct
Switch Boxes used across the FPGA, though in practice, a small
set of Switch Boxes are often reused to reduce design complexity.

Since uni-directional routing tracks cannot have more than one
driver, a Connection Box may conflict with a Switch Box when
they drive the same routing track. To solve this conflict, PRGA adds
bridging nets to connect Connection Box outputs into Switch
Boxes and merges them to the switches inside Switch Boxes, as
highlighted in Fig. 2 (b).

3.3.4 Tile. A Tile wraps one Logic Block instance or multiple
instances of an IO Block, together with the Connection Boxes
around them. Fig. 2 (c) shows a tile wrapping one Logic Block

and two Connection Boxes. Multiple Tiles can be created for the
same block, enabling the usage of different Connection Boxes as
mentioned in Sec. 3.3.3. Helper functions are provided for automat-
ically generating Tiles for each block, as well as properly creating,
populating, and instantiating Connection Boxes.

This extra level of hierarchy is primarily aimed to improve ASIC
implementation, and may be useful for certain configuration pro-
tocols. When used as the lowest-level physical block other than
the Logic Block wrapped in it, it allows the EDA tools to work
on a larger design and exploit more optimization opportunities,
while guaranteeing that each Logic Block has only one physical
implementation.

3.3.5 Array. The top level in the FPGA architecture hierarchy is
an Array composed of Tiles, Switch Boxes, and nested Arrays.
Fig. 2 (a) & (b) shows the nesting and internals of Arrays. Each
Array is a 2-dimensional mesh. Each tile in the mesh can accom-
modate up to four Switch Boxes (one on each corner) plus one
Tile or Array. Large Tiles or Arrays may occupy more than one
tile. Switch Boxes are not allowed at any routing channel cross-
points that are covered by these large Tiles or Arrays, and routing
tracks around them are truncated if not allowed to run through
or over them. PRGA offers helper functions for automatically, cor-
rectly connecting the wires in an Array. If any built-in routing box
population algorithm is used, PRGA can also automatically create,
populate and instantiate proper Switch Boxes.

PRGA offers great regularity and scalability through the use
of nested Arrays. Special configuration circuitry features such as
partial or dynamic reconfiguration can also take advantage of this
flexible hierarchy. For example, to implement partial dynamic recon-
figuration, we can divide the FPGA into dynamically reconfigurable
regions, each region being an Array. We can add one configuration
controller per region and expose a well-defined interface of the
controller into adjacent regions, enabling dynamic reconfiguration
from adjacent regions.

3.4 Configuration Circuitry
Configuration circuitry, including memory cells and peripheral cir-
cuits, is one of the biggest commercial secrets in the FPGA industry
yet is often neglected in FPGA architecture research, despite it mak-
ing up a large proportion of on-chip area (20%-40% reported [12, 14])
and static energy consumption. Studying and modeling configura-
tion circuitry is necessary to fully understand FPGA architecture
implications. In addition, optimization of configuration circuitry
enables novel architectures [7, 9, 11, 16].

Two types of configuration circuitry and comprehensive sup-
ports for them are included in PRGA at the time of this paper:
Scanchain and Pktchain, respectively.

3.4.1 Scanchain. As its name suggests, Scanchain employs a shift
register chain across the entire FPGA. The bitstream format is
also straightforwardly a literal stream of bits. The chain may be
single-bit wide or multi-bit wide, offering a trade-off between faster
configuration and higher metal usage. Fig. 3b shows the single-bit
configuration chain segment inside a fracturable LUT3.

Though it seems naïve, careful design is still required to avoid
potential hazards:

• Configuration reset and enable. Even a small FPGA may
contain thousands of configuration bits, and this number
grows quickly into millions as the size of the FPGA increases.
To synchronize the reset and enable signals for this huge
number of registers, PRGA automatically registers the reset
and enable signals along the hierarchy.

• Chain orderingwith physical considerations. Logically,
the registers on the chain can be ordered arbitrarily. Physi-
cally, however, it is better to put the configuration bits close
to the modules they control, and order the chain so that reg-
isters are connected only to adjacent registers. PRGA makes
good guesses by default, but user-provided hints are also
accepted.

3.4.2 Pktchain. For large FPGAs, Scanchain is not only slow but
also energy-hungry, because all the registers on the scan chain
must be enabled during programming. Pktchain addresses this
issue by dividing the single Scanchain into segments and adding
high-bandwidth NoC routers between them. This design only adds
a small amount of extra wires, minimizing the impact on metal
resources that are precious for the logical routing resources. The
high bandwidth of the NoC allows fast delivery of the bitstream
segments. Once delivered, each bitstream segment is independently
shifted in the corresponding chain segment. Multiple chain seg-
ments can operate in parallel, thus increasing the programming
speed. This design also greatly reduces unnecessary switching of
the registers, thus reducing the energy consumption.

3.4.3 Extensions. Scanchain and Pktchain are both developed
upon the low-level API provided by PRGA, and they are great
proof-of-concept designs showcasing the strong extensibility of the
framework. Other configuration circuitry types, for example, the
industry-standard SRAM-based design, can be added in a similar
way. It is also possible to implement more complex configuration
circuitry and protocols, such as the dynamic partial reconfiguration
design described in Sec. 3.3.5.

4 CASE STUDY: BUILDING A 14K-LUT6 FPGA
In this section, we illustrate the FPGA design flow by going through
the process of building an example FPGA using PRGA. Fig. 4 shows
the abstract, hierarchical floorplan and the configuration circuitry
settings. Table 1 summarizes the key parameters of the FPGA. List-
ing 1 shows the Python script for building this example FPGA us-
ing the PRGA Python API. This FPGA provides 14240 multi-modal
LUT6s, 28480 registers, 2.56Mbits memory, 1279 GPIOs, and one IO
dedicated for clock.

This example design is very similar to the synthesizable FPGAs
presented in prior works [12, 24]. PRGA is capable of generating
very different architectures, and we choose the similar design so
that we can evaluate and compare our design with prior works.

4.1 Database Preparation
We choose the FLE6 multi-modal primitive used in prior works [12,
24] as the basic logic element for this example FPGA. FLE6 supports
two modes: (1) one LUT6 and an optional D-flipflop, (2) two BLEs
that are independently configurable. Each BLE also supports two
modes: (1) one LUT5 and an optional D-flipflop, (2) two LUT4s, one

(a) Floorplan of the example FPGA. Top-level Array is composed
of LOGIC Arrays and IO Tiles. Each LOGIC Array consists of 89
Logic Blocks (L), 5 BRAMs (M), and 1 physical-only configuration
router (C). Each IO Tile provides 8 GPIOs. Each Logic Block con-
tains 10 FLE6 (multi-modal LUT6 with hard adders and flipflops).
Each BRAM provides 32Kbits memory. Routing boxes are omitted
in the figure.

(b) Configuration network and chain segments

Figure 4: Floorplan and configuration circuitry of the exam-
ple FPGA in Sec. 4.

hard adder, and one optional D-flipflop. The figure describing the
structure of this primitive can be found in [12].

In addition, a third-party 512 × 64𝑏 SRAM macro is added to the
build. To give more flexibility to synthesis and packing, we can add
extra muxing logic around the SRAM to support smaller word sizes,
for example, 1𝐾 × 32𝑏, 2𝐾 × 16𝑏, 4𝐾 × 8𝑏, etc. This is achieved by
creating Abstract Views for each mode, writing custom Verilog
files, and creating a Design View to link them together, as shown
in line 7-40 in Listing 1 (Verilog not shown).

4.2 Architecture Customization
After adding all the custom Logic Primitives, we can start cus-
tomizing the FPGA architecture. First, routing tracks and global nets
are added to the FPGA, as shown in line 43-46 in Listing 1. Then,
we customize each Logic Block and IO Block (line 50-81). As
discussed in Sec. 2.2, we only need to describe the functional struc-
tures of these blocks. Pack patterns (line 62) and direct inter-block
wires (line 70) are added for the carry chain. After describing the
blocks, we construct Tiles (line 85-94) and Arrays (line 100-116),
then adopt built-in algorithms to automatically create, populate,
and instantiate routing boxes.

4.3 Transformation and Generation Passes
After specifying the FPGA architecture, we prepare our Jinja [25]
text renderer, then set up the transformation and generation passes,

Listing 1: Python script for building the example FPGA de-
scribed in Sec. 4. Some API syntax is abbreviated for clarity.
This script alone drives the entire FPGA design flow. It also
generates all the RTL as well as all the files needed by the
CAD tools.

1 from prga import *

== database preparation ==
ctx is an Context object for our workspace
ctx = Pktchain.new_context(noc_width=8, chain_width=1)

6
== design and add multi-modal primitive for block RAM ==
bdr is a Builder object
bdr = ctx.build_multimode(name="memory")
bdr.create_clock (name="clk")

11 bdr.create_input (name="D", width=64)
bdr.create_output(name="Q", width=64)
... and more ports

-- create abstract views for the modes --
16 for name, AW, DW in [

["512x64b", 9, 64],
["1K32b", 10, 32],
... and more modes

]:
21 mb = bdr.build_mode(name="mode_"+name)

abstract view of non-programmable memory modules
dpram = ctx.build_memory(name="dpram_"+name,

addr_width=AW, data_width=DW, vpr_model="dpram",
).commit()

26 inst = mb.instantiate(model=dpram, name="i_ram_core")
mb.connect(mb.ports["clk"], inst.pins["clk"])
mb.connect(mb.ports["D"][0:DW], inst.pins["data1"])
mb.connect(inst.pins["out2"], mb.ports["Q"][0:DW])
... and more connections

31 mb.commit()

-- link design view --
user Verilog implementation provided by user
bdr = bdr.build_logical_counterpart(

36 verilog_template="memory.v")
... design-specific settings

-- commit the design --
memory = bdr.commit()

41
== add routing resources ==
glb_clk = ctx.create_global(name="clk", is_clock=True)
glb_clk.bind(position=(0, 21), subtile=0) # bind to an IO
l4 = ctx.create_segment(name='L4', width=32, length=4)

46 l16 = ctx.create_segment(name='L16', width=1, length=16)

== customize blocks ==
-- logic block --
bdr = ctx.build_logic_block(name="clb")

51 clk = bdr.create_global(global_=glb_clk, side="south")
in_ = bdr.create_input (name="in", width=30, side="east")
ci = bdr.create_input (name="ci", width=1, side="south")
out = bdr.create_output(name="out", width=20, side="east")
co = bdr.create_output(name="co", width=1, side="north")

56 xbar_i, xbar_o = [], []
xbar_i.extend(in_)
for idx, inst in enumerate(bdr.instantiate(

model=ctx.primitives["fle6"], name="i_fle", reps=10):
bdr.connect(clk, inst.pins["clk"])

61 bdr.connect(inst.pins["out"], out[idx*2:(idx+1)*2])
bdr.connect(ci, inst.pins["cin"],

vpr_pack_patterns=["carrychain"])
ci = inst.pins["cout"]
xbar_i.extend(inst.pins["out"])

66 xbar_o.extend(inst.pins["in"])
bdr.connect(ci, co)
... connect each "xbar_o" to 50% "xbar_i"s
clb = bdr.commit()

Listing 2: (Continued)
70 # -- create direct inter-block wires --

ctx.create_tunnel(name="carrychain", offset=(0, -1),
source=clb.ports["cout"], sink=clb.ports["cin"])

-- IO block --
75 bdr = ctx.build_io_block(name="iob")

... ports, instances and connections
iob = bdr.commit()

-- BRAM block (tall block) --
80 bdr = ctx.build_logic_block(name="bram", width=1, height=2)

bdr.instantiate(model=memory, name="i_ram")
... ports, instances and connections
bram = bdr.commit()

85 # == automatically create and populate tiles ==
-- IO tiles --
iotiles = {}
for edge in ["west", "north", "east", "south"]:

bdr = ctx.build_tile(block=iob, capacity=8, edge=edge)
90 bdr.fill(fc=(0.15, 0.15)).auto_connect()

iotiles[edge] = bdr.commit()

-- CLB tile --
bdr = ctx.build_tile(block=clb)

95 clbtile = bdr.fill(fc=(0.055, 0.1)).auto_connect().commit()

-- BRAM tile --
bdr = ctx.build_tile(block=bram)
bramtile = bdr.fill(fc=(0.055, 0.1)).auto_connect().commit()

100
== arrays ==
sb_pat = SwitchBoxPattern.cycle_free

-- LOGIC array --
105 bdr = ctx.build_array(name="logic", width=10, height=10)

for x, y in product(range(bdr.width), range(bdr.height)):
if x == 5:

if y % 2 == 0:
bdr.instantiate(model=bramtile, position=(x, y))

110 elif not (x == 0 and y == 0): # reserved for router
bdr.instantiate(model=clbtile, position=(x, y))

logic = bdr.fill(sbox_pattern=sb_pat).auto_connect().commit()

-- top-level array --
115 bdr = ctx.build_array(name="top", width=42, height=42,

is_top=True)
... instantiate LOGIC arrays and IO tiles
top = bdr.fill(sbox_pattern=sb_pat).auto_connect().commit()

120 # == customize configuration circuitry insertion ==
callback function for customize router & chain ordering
def order_submodules(module):

...

125 # == apply transformation and generation passes ==
-- Jinja2 template renderer --
renderer = Pktchain.new_renderer()

-- transformation and generation flow --
130 flow = Flow(

TranslationPass(), # generate design views
Pktchain.Insert(order_submodules),
VPR_Arch_Gen(output_file="vpr/arch.xml"),
VPR_RRG_Gen(output_file="vpr/rrg.xml"),

135 Yosys_Scripts_Gen(output_dir="syn"),
Verilog_Gen(output_dir="rtl"),
... and more
)

140 # -- fire the workflow --
flow.run(ctx, renderer)

-- save core data structure on disk --
ctx.pickle("ctx.pkl")

Param. Value Note
Routing Resources
𝑊 288 Routing Channel Width

𝑛 × 𝐿 1×16 Track count & length per direction per channel32×4
𝐹𝑠 3 Switch Box connectivity. Pattern: cycle-free [15]
Logic Block

𝑁𝐹𝐿𝐸6 10 #FLE6s per block
𝑋 50% Local connectivity

𝐹𝑐,𝑖𝑛 0.055 Connection Box input connectivity
𝐹𝑐,𝑜𝑢𝑡 0.1 Connection Box output connectivity

BRAM
𝑚 32Kbits Memory capacity

𝐹𝑐,𝑖𝑛 0.055 Connection Box input connectivity
𝐹𝑐,𝑜𝑢𝑡 0.1 Connection Box output connectivity

IO Block
𝑐 8 #IOs per block

𝐹𝑐,𝑖𝑛 0.15 Connection Box input connectivity
𝐹𝑐,𝑜𝑢𝑡 0.15 Connection Box output connectivity

Configuration Circuitry: Pktchain
𝐵 8b NoC data width

𝑊𝑐 1b Leaf scanchain width
Table 1: Parameters of the example FPGA built in Sec. 4

as shown in line 125-136 in Listing 1. The Flow object then resolves
the dependencies between the passes and determines the correct
execution order. Finally, we start the Flow to apply all the passes
to the core Context data structure, ctx (line 139).

After all the passes finish transforming the core data structure
or generating files, we save the core data structure onto hard disk
for future use (line 142).

4.4 ASIC Implementation
The FPGA design is broken down into 3 levels of hierarchy and 5
physical blocks: 1) CLB Tile; 2) BRAM Tile; 3) IO Tile; 4) LOGIC
Array composed of CLB Tiles and BRAM Tiles; and 5) Top-level
Array composed of LOGIC Arrays and IO Tiles. Note that this
partitioning is for this example design only, and can be changed
freely for other designs. We then lay out the FPGA using standard
cell libraries on a state-of-the-art FinFET technology.

As discussed in Sec. 3.3.4, Tiles are chosen as the bottom-level
physical block instead of Logic Blocks to improve the Quality
of Result (QoR). In the LOGIC Array, Tile instances are placed
in almost perfect alignment with their logical positions. We adopt
the cycle-free Switch Box pattern [15] and flatten the Switch Box
instances in the Arrays. Compared to a black-boxed approach in
which blocks and routing boxes are designed individually then
simply stitched together at the top level, this design flow applies
proper constraints at Array level, enabling the EDA tools to resolve
many hazards that are otherwise unidentifiable, for example, hold
time violations, clock skew, crosstalk, IR drop, etc.

Different challenges arise when designing the top-level Array
because of its scale. To minimize EDA tool runtime without sacri-
ficing QoR, we reduce the logic left in the top-level Array to the
minimum. Pins of the LOGIC Arrays are also aligned, reducing
wiring congestion.

Figure 5: Layout photos of the custom FPGA

Area (𝜇𝑚2) [12] [24] Stratix IV 1 This work
LAB/CLB 15333 - 2 - 2 15254

Tile 30625 17648 11050 34209
(277%) (160%) (100%) (310%)

1 Data reported by [12].
2 Unreported.

Table 2: Area Comparison

Path Delay (𝑛𝑠) [12] [24] Stratix IV 1 This work

LUT-5 0.46 0.14 0.27 0.55
(170%) (52%) (100%) (204%)

LUT-6 0.50 0.15 0.28 0.64
(179%) (54%) (100%) (229%)

1-bit Adder 0.70 0.54 0.77 0.72/0.09 2

(90%) (70%) (100%) (94/12%)

20-bit Adder 1.63 1.10 1.23 0.98/0.82 2

(133%) (89%) (100%) (80/67%)

Local Routing 0.27 0.12 0.17 0.34/0.92 3

(159%) (71%) (100%) (200/541%)

L4 Track
4 2.53 0.40 0.59 2.22

(429%) (68%) (100%) (376%)

L16 Track
4 4.02 0.78 1.02 2.91

(394%) (76%) (100%) (285%)
L4→L4 Switch 5 - - - 1.21
L4→L16 Switch 5 - - - 1.20
L16→L4 Switch 5 - - - 1.20
L16→L16 Switch 5 - - - 1.46
1 Data reported by [12].
2 First number is the delay from addends to carry-out; second is carry-in to carry-out.
3 First number is the delay from block inputs to FLE6 inputs; second is the delay of the feedback

connections from FLE6 outputs back to FLE6 inputs.
4 [12] and [24] have different definitions for this metric. We adopt the definition from [12], i.e.

delay from a CLB output pin to a CLB input pin, connected via one straight track.
5 Delay from the driver of the source track to the driver of the destination track.

Table 3: Representative Path Delays

Once the layout is finished and verified, Static Timing Analysis
(STA) using automated EDA tools can be applied to extract the tim-
ing and power characteristics from the FPGA. This information can
be passed back into the generation passes to get timing-annotated
scripts for the HDL-to-bitstream toolchain.

5 EVALUATION
5.1 ASIC Implementation
In this section, we evaluate the layout of the example FPGA built
in Sec. 4, and compare the results with previous works [12, 24] and

2 × 102

3 × 102

4 × 102

6 × 102

Pe
ak

 M
em

or
y

(M
B)

10−1

100

101

102

103

Ru
nt

im
e

(s
)

Architecture Customization
Transformation & Generation Passes
Pickling
Unpickling

102

103

104

To
ta

l r
un

tim
e

fo
r R

RG
_G

EN
 (s

)

10−1

100

101

To
ta

l f
ile

 si
ze

 (M
B)

VPR arch.xml
Generated Verilog
Pickled Context

2 8 32 128 512
#LUTs (K)

101

102

103

104

RR
G.

xm
l f

ile
 si

ze
 (M

B)

Figure 6: Scalability and performance of PRGA as the plat-
form itself. All axes are in log scale.

Stratix IV (data reported by [12]). Since we are not using 40nm tech-
nology, we use the CMOS scaling model [22] to scale our evaluation
results to 40nm.

5.1.1 Area. Table 2 summarizes the area comparison. For Logic
Block, our result is almost the same as the previous standard-cell-
based FPGA [12] (within 1% difference). As for Tile area (including
Connection Boxes and Switch Boxes), our area is 11.7% larger than
the previous standard-cell-based FPGA [12], 1.94x the area of the
previous FPGA built with standard cells and custom switches [24],
and 3.1x the area of Stratix IV. However, the overall utilization rate
is much lower than 80% as reported by prior works due to the use
of a FinFET technology, and the area may be optimized further by
using a more efficient type of configuration circuitry.

5.1.2 Performance. The typical path delays inside the Logic Block
in this work are slightly worse than the previous standard-cell-
based FPGA [12], but the routing track delays are slightly better.
However, when compared to Stratix IV, or the FPGA built with both
standard cells and custom switches [24], the example FPGA in this
work is almost 2-4x worse.

5.2 Scalability
In this section, we evaluate the scalability and performance of
PRGA as a software. We scale the architecture described in Sec. 4

from 2K LUT6s up to 512K LUT6s, and compare the memory usage,
runtime, and output file sizes.

As shown in Fig. 6, PRGA has a low memory footprint, and ex-
cept for Routing Resource Graph (RRG) generation, PRGA only needs
a short amount of time to generate all the files needed. Memory
usage and runtime both scale linearly as the capacity of the archi-
tecture increases, but even for the half-million-gate architecture,
PRGA finishes with less than 1GB memory within 5 minutes.

The bottleneck is RRG generation. RRG can be read by VPR
in addition to the architecture specification XML, overriding the
default auto-generated routing resource graph in VPR at a per-
wire, per-connection basis, thus enabling the high customizability
PRGA aims for. However, RRG was initially an internal file format
designed for debugging and not intended to scale. Therefore, it
stores the the entire routing graph of an FPGA in human-readable
XML format, which easily grows beyond Gigabytes as the FPGA
size grows. This has been noticed by the maintainers of VPR, and
updates are being planned.

6 ENABLED APPLICATIONS
This section outlines some of the compelling applications that
PRGA enables. PRGA can be used not only as a research platform
but also as a generator of custom FPGA IP cores.

6.1 FPGA Architecture Research
PRGA enables research into the architectures of FPGAs. The need
for a good low-level FPGA framework comes inmultiple forms. First,
PRGA can be used as a perfect platform to perform FPGA design
optimization. Coupled with an optimization engine (hill-climbing,
genetic algorithm, simulated annealing, etc.), PRGA is the ideal
platform to automate the optimization of the hardware side of an
FPGA design. The high configurability of PRGA enables automated
searching of a huge design space. FPGA optimization becomes
even more powerful when optimizing for a set of applications or
application domains [13].

Second, PRGA is complementary to high-level design tools such
as VPR. While high-level FPGA design tools enable even faster
architectural design space exploration, they can miss many of the
implementation details which are especially important in advanced
device nodes. This leads to a complimentary need for low-level
design tools such as PRGA which can be run through commercial
EDA tools to gather accurate power, performance, and area results
that can be used by researchers to evaluate different FPGA designs.

An important feature of PRGA is that the configuration circuitry,
configuration topology, and storage strategy are all customizable
and independent of the design hierarchy. This flexibility enables
research into the design of the configuration circuitry, which in-
herently requires the low-level capabilities that PRGA provides.
PRGA also supports dynamic and partial reconfiguration via its
SoC interface which opens the door to architectures like DPGA [9]
and Tabula [26].

6.2 FPGA CAD Research
PRGA can be used as a target for FPGA CAD tool research. FPGA
CAD tools need FPGA platforms to target. PRGA provides copious
different designs and, most importantly, can be characterized to

Project [17] [14] [12] [24] This work
Std. Cells ✓ ✓ ✓ ✓ ✓

Custom Cells ✗ ✗ ✗ ✓ ✓

Hetero. Blocks 1 ✗ ✗ ✓ ✓ ✓

Custom Config. ✗ ✗ ✗ ✓2 ✓

Split SB/CB ✗ ✗ ✗ ✗ ✓

Custom Hier. 3 ✗ ✗ ✗ ✗ ✓

Open-Source ✓ ✗ ✗ ✓ ✓
1 Support for tall/wide blocks.
2 Configuration pins may be exposed for manual connection; No bitstream generation

or RTL support.
3 Customizable hierarchy of generated RTL.

Table 4: Taxonomy of FPGA Prototyping Works

provide area, timing, and energy information to feed the FPGA
CAD tools.

Beyond CAD tools for FPGAs, PRGA is also a good candidate
for being a test design for the greater ASIC CAD tool research
area. By providing large and parameterized designs, PRGA can be
used as a parameterizable benchmark to test chip-design CAD tools.
PRGA has already been used as a test case for some emerging open
source CAD tools.

6.3 SoC Integration
PRGA is not only a research platform. It generates FPGA fabrics
that can be implemented in chips. One of the most promising use
cases where free (open-source) or customized FPGAs are desirable
is as an embedded FPGA in a System on Chip (SoC). SoCs are be-
coming increasingly heterogeneous, and it is difficult to always
know what functionality is needed in an SoC before fabrication.
Likewise, applications are evolving faster than ASIC design cycles,
pushing more designs to reconfigurable hardware. This has created
a growing need for embedded FPGAs [3]. Unlike commercial em-
bedded FPGA providers (e.g., Achronix, Flex Logix, QuickLogic)
which require licensing fees, PRGA’s open-source nature provides
an opportunity to add embedded FPGA functionality without IP
licensing cost. This can be especially impactful in two use cases (1)
when only a very small amount of FPGA resources are needed or (2)
when the embedded FPGA functionality is needed in low-budget
or academic designs.

7 RELATEDWORK
In this section, we qualitatively compare PRGA with other FPGA
prototyping works. Table 4 summarizes the key differences between
this work and previous works.

Archipelago [17] is the first open-source project for designing
standard-cell-based FPGAs. It is developed in Chisel [2] and coarsely
parameterized, providing limited customizability. It uses an early
version of VTR for bitstream generation. Various designs gener-
ated by Archipelago were placed and routed using a 65nm process
technology. Unfortunately, the project is no longer maintained.

There are two [12, 14] successful, standard-cell-based FPGAs
built with commercial EDA tools. Based on the VPR/VTR series [18],
these projects provide independent data points in the design space,
but are not open sourced as publicly available research tools.

OpenFPGA [24] is another open-source FPGA prototyping frame-
work that is well-maintained and actively developed. OpenFPGA is

capable of generating synthesizable RTL from an extended XML
schema based on the VTR architecture description file format. Most
VTR features are supported, including heterogeneous blocks, multi-
modal primitives, carrychains, BRAMs, and so on. In addition, user-
defined components and custom cells are also supported. The major
differences between PRGA and OpenFPGA are the followings:

(1) Currently, OpenFPGA can only generate RTL in a fixed hier-
archy: Top-level array → logic and IO blocks, routing boxes
→ programmable switches and primitives. PRGA provides
more customizability in module hierarchy and RTL genera-
tion, which not only enables more diverse ASIC implemen-
tation strategies but also improves scalability.

(2) OpenFPGA is developed on top of VTR [18] and tightly inte-
grated with the VTR codebase. PRGA is instead decoupled
from VTR and uses VTR only as an open-source FPGA place-
and-route tool. This decoupling, along with the modularized
workflow, greatly reduces the bar for PRGA users to cus-
tomize and extend the framework, and allows them to focus
on their interested part.

(3) OpenFPGA currently supports 4 types of configuration cir-
cuitry: chain-based, frame-based, memory-banked, and flat-
tened, in which the last one exposes all configuration bits as
ports of the RTL modules, enabling custom configuration cir-
cuitry with limited support for bitstream generation. PRGA
allows users to directly modify RTL generation, and provides
various levels of support for bitstream generation.

8 CONCLUSION
In conclusion, PRGA is a great platform for building custom FP-
GAs. Whether it be enabling researchers or SoC chip builders, the
open-source nature, easy-to-use design, and high configurability
make it an excellent low-level FPGA framework in a post-Moore’s
Law world. By providing full Verilog RTL of all of the generated
designs, area and performance can be modeled with ultimate ac-
curacy. PRGA is scalable and provides reasonable runtimes even
for large designs (an important consideration for commercial use).
PRGA provides comparable area and timing delay as other projects
built out of the same technology (standard-cell-based FPGAs). We
look forward to many years of supporting PRGA and expect it to
serve as the basis for FPGA research and FPGA designs for years
to come.

9 ACKNOWLEDGEMENTS
We want to thank our colleagues from the Princeton Parallel Group,
especially Ting-Jung Chang, and Fei Gao, for their help with the
ASIC backend flow. This material is based on research sponsored
by the NSF under Grant No. CCF-1453112, Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement No. FA8650-18-2-7852. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA), the NSF, or the U.S. Government.

REFERENCES
[1] Amazon. 2020. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-

types/f1/
[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Construct-
ing Hardware in a Scala Embedded Language. In Proceedings of the 49th Annual
Design Automation Conference (DAC ’12). Association for Computing Machinery,
New York, NY, USA, 1216–1225. https://doi.org/10.1145/2228360.2228584

[3] Brian Bailey. 2019. The Case For Embedded FPGAs Strengthens And Widens.
https://semiengineering.com/embedded-fpga-becomes-a-viable-option/

[4] Vaughn Betz. 2000. Architecture and CAD for Speed and Area Optimization of
FPGAs. Ph.D. Dissertation. University of Toronto.

[5] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A Cloud-Scale
Acceleration Architecture. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-49). IEEE Press, Article 7, 13 pages.

[6] Yao-Wen Chang, D. F. Wong, and C. K. Wong. 1996. Universal Switch Modules
for FPGA Design. ACM Trans. Des. Autom. Electron. Syst. 1, 1 (Jan. 1996), 80–101.
https://doi.org/10.1145/225871.225886

[7] Paul Chow, Soon Ong Seo, Jonathan Rose, Kevin Chung, and P Gerard. 1999. The
Design of an SRAM-Based Field-Programmable Gate Array — Part I : Architecture.
7, 2 (1999), 191–197.

[8] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. 2010. Single-chip
Heterogeneous Computing: Does the Future Include Custom Logic, FPGAs, and
GPGPUs? Proceedings of the Annual International Symposium onMicroarchitecture,
MICRO (2010), 225–236. https://doi.org/10.1109/MICRO.2010.36

[9] André DeHon. 1996. DPGA Utilization and Application. In Proceedings of the
1996 ACM Fourth International Symposium on Field-Programmable Gate Arrays
(FPGA ’96). Association for Computing Machinery, New York, NY, USA, 115–121.
https://doi.org/10.1145/228370.228387

[10] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx
Adaptive Compute Acceleration Platform: Versal™ Architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’19). Association for Computing Machinery, New York, NY, USA,
84–93. https://doi.org/10.1145/3289602.3293906

[11] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong
Zheng, Bob Brennan, and Christos Kozyrakis. 2016. DRAF: A Low-Power DRAM-
Based Reconfigurable Acceleration Fabric. SIGARCH Comput. Archit. News 44, 3,
506–518. https://doi.org/10.1145/3007787.3001191

[12] Brett Grady and Jason H. Anderson. 2018. Synthesizable Heterogeneous FPGA
Fabrics. In 2018 International Conference on Field-Programmable Technology (FPT).
222–229.

[13] Mark Hammerquist and Roman Lysecky. 2008. Design Space Exploration for
Application Specific FPGAs in System-on-Chip Designs. In 2008 IEEE International

SOC Conference. 279–282.
[14] Jin Hee Kim and Jason H. Anderson. 2015. Synthesizable FPGA Fabrics Targetable

by the Verilog-to-Routing (VTR) CAD Flow. In 25th International Conference on
Field Programmable Logic and Applications, FPL 2015. https://doi.org/10.1109/
FPL.2015.7293955

[15] Ang Li, Ting-Jung Chang, and David Wentzlaff. 2020. Automated Design of
FPGAs Facilitated by Cycle-Free Routing. In 2020 30th International Conference
on Field-Programmable Logic and Applications (FPL). 208–213. https://doi.org/10.
1109/FPL50879.2020.00042

[16] Ting-Jung Lin, Wei Zhang, and Niraj K Jha. 2012. FPGA Based on 10T Low-Power
SRAMs. 20, 11 (2012), 2151–2156.

[17] Hao Jun Liu. 2014. Archipelago - An Open Source FPGA with Toolflow Support.
Master’s thesis. University of Toronto.

[18] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu,
Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed,
Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. 2014. VTR
7.0: Next Generation Architecture and CAD System for FPGAs. ACM Trans.
Reconfigurable Technol. Syst. 7, 2, Article 6 (July 2014), 30 pages. https://doi.org/
10.1145/2617593

[19] Gordon E. Moore. 1965. Cramming More Components Onto Integrated Circuits.
Electronics (April 1965).

[20] Duncan J. M. Moss, Eriko Nurvitadhi, Jaewoong Sim, Asit Mishra, Debbie Marr,
Suchit Subhaschandra, and Philip H. W. Leong. 2017. High Performance Binary
Neural Networks on The Xeon+FPGA™ Platform. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL). 1–4.

[21] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy,
Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P.
Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent, and
Vaughn Betz. 2020. VTR 8: High-Performance CAD and Customizable FPGA
Architecture Modelling. ACM Trans. Reconfigurable Technol. Syst. 13, 2, Article 9
(May 2020), 55 pages. https://doi.org/10.1145/3388617

[22] Aaron Stillmaker and Bevan Baas. 2017. Scaling Equations for the Accurate
Prediction of CMOS Device Performance from 180nm to 7nm. Integration, the
VLSI Journal 58, January (2017), 74–81. https://doi.org/10.1016/j.vlsi.2017.02.002

[23] SymbiFlow. 2020. FPGA ASM (FASM). https://fasm.readthedocs.io/en/latest/
[24] Xifan Tang, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere, and

Pierre-Emmanuel Gaillardon. 2019. OpenFPGA: An Opensource Framework
Enabling Rapid Prototyping of Customizable FPGAs. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). 367–374. https:
//doi.org/10.1109/FPL.2019.00065

[25] The Pallets Projects. 2020. Jinja. https://palletsprojects.com/p/jinja/
[26] Tom R. Halfhill. 2010. Tabula’s Time Machine. Microprocessor Report.
[27] Steven J.E. Wilton. 1997. Architectures and Algorithms for Field-Programmable

Gate Arrays with Embedded Memory. Ph.D. Dissertation. University of Toronto.
[28] Clifford Wolf. 2020. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
[29] Xilinx. 2020. Zynq-7000 SoC. https://www.xilinx.com/products/silicon-devices/

soc/zynq-7000.html

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1145/2228360.2228584
https://semiengineering.com/embedded-fpga-becomes-a-viable-option/
https://doi.org/10.1145/225871.225886
https://doi.org/10.1109/MICRO.2010.36
https://doi.org/10.1145/228370.228387
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3007787.3001191
https://doi.org/10.1109/FPL.2015.7293955
https://doi.org/10.1109/FPL.2015.7293955
https://doi.org/10.1109/FPL50879.2020.00042
https://doi.org/10.1109/FPL50879.2020.00042
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/3388617
https://doi.org/10.1016/j.vlsi.2017.02.002
https://fasm.readthedocs.io/en/latest/
https://doi.org/10.1109/FPL.2019.00065
https://doi.org/10.1109/FPL.2019.00065
https://palletsprojects.com/p/jinja/
http://www.clifford.at/yosys/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Abstract
	1 Introduction
	2 PRGA Workflow
	2.1 Database Preparation
	2.2 Architecture Customization
	2.3 Transformation and Generation Passes
	2.4 ASIC Implementation
	2.5 Application Development and Verification

	3 Architecture
	3.1 Routing Resources
	3.2 Views
	3.3 Hierarchy and Customizability
	3.4 Configuration Circuitry

	4 Case Study: Building a 14K-LUT6 FPGA
	4.1 Database Preparation
	4.2 Architecture Customization
	4.3 Transformation and Generation Passes
	4.4 ASIC Implementation

	5 Evaluation
	5.1 ASIC Implementation
	5.2 Scalability

	6 Enabled Applications
	6.1 FPGA Architecture Research
	6.2 FPGA CAD Research
	6.3 SoC Integration

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

