
PRGA: An Open-source Framework for Building
and Using Custom FPGAs

Ang Li
Dept. of Electrical Engineering

Princeton University
Princeton, NJ, USA

angl (at) princeton (dot) edu

David Wentzlaff
Dept. of Electrical Engineering

Princeton University
Princeton, NJ, USA

wentzlaf (at) princeton (dot) edu

Abstract—In this era where Moore’s Law is approaching its
finale, industry has started looking for alternatives to conven-
tional CPUs in order to meet the exploding needs of more diverse,
complex and evolving applications. FPGAs are one of the most
promising alternatives, offering performance, programmability,
and flexibility. However, FPGAs are primarily available as
packaged chips from a small number of manufacturers. The tool
chains of these FPGAs remain closed-source, and the internal
architectures remain a mystery to the public. As a consequence,
academia and the open-source community face great difficulties
trying to get involved in the development of FPGAs and their
tools. In this paper, we present Princeton Reconfigurable Gate
Array (PRGA), a highly customizable, scalable, and complete
open-source framework for building and using custom FPGAs.
The front-end of PRGA, the PRGA Builder, generates synthe-
sizable RTL for a user-defined FPGA that can be fed to the
ASIC design flow to enable taping out stand-alone or embedded
FPGAs. PRGA Builder features high customizability, supporting
heterogeneous logic blocks, custom IP cores, custom routing
networks, etc.; it also features high scalability, scaling up to
billions of basic elements. PRGA Builder also generates a set
of files for the back-end of PRGA, the PRGA Tool Chain, which
can synthesize, place & route, and generate the bitstream for
a target RTL design using several open-source CAD tools. The
bitstream can then be used to program the generated FPGA
so as to implement the target design. We have tested PRGA
with a few small-scale FPGA architectures and target designs.
Preliminary results show that the runtime of the PRGA Builder
scales linearly with the total number of logic elements and wiring
resources, and the memory usage grows very slowly as the FPGA
becomes larger.

Index Terms—open-source, FPGA

This material is based on research sponsored by the NSF
under Grant No. CCF-1453112, Air Force Research Labora-
tory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement No. FA8650-18-2-7852. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency
(DARPA), the NSF, or the U.S. Government.

I. INTRODUCTION

As Moore’s Law approaches its end-game, the increasing
gap between the needs of emerging applications and the hard-
ware capacity forces programmers to look for alternatives to
conventional CPUs for high-performance computing. Special-
ized ASICs, which deliver the highest performance for a spe-
cific small set of applications, suffer from high non-recurring
engineering (NRE) cost and low flexibility, making them
unsatisfactory for constantly evolving applications. Domain-
specific accelerators like GPUs balance between flexibility
and performance, yet are only feasible in a small number
of domains where applications are composed of regular com-
putation patterns. In comparison, FPGAs provide both high
performance and flexibility, making them the most promising
alternatives to CPUs. Unfortunately, FPGAs are primarily
available as packaged chips from a small number of manu-
facturers. The tool chains of these FPGAs are expensive and
closed-source, and the internal architecture of them are kept
as commercial secrets. As a consequence, academia and the
open-source community are hampered and unable to explore
potential improvements of FPGA architectures and their tool
chains. Great efforts have been devoted to developing open-
source tool chains [1]–[5] which enable customized configu-
ration of the commercial FPGAs. However, the architecture of
these FPGAs remain a mystery, and there are no open-source
frameworks for exploring custom FPGA designs.

Princeton Reconfigurable Gate Array (PRGA) is aimed at
filling this void. As shown in Fig. 1, PRGA consists of two
parts: the front-end - the PRGA Builder, a highly customizable
and scalable Python API for users to describe, optimize, and
build their own custom FPGAs; and the back-end - the PRGA
Tool Chain, a complete RTL-to-bitstream flow for mapping
target RTL designs onto the FPGAs built with the PRGA
Builder. The PRGA Tool Chain uses Yosys [3] for synthesis,
VPR [4] for pack, place, & route, and PRGA Bitgen (a bit-
stream generator specially designed for PRGA) for bitstream
generation. Notably, the PRGA Tool Chain does not modify
any of the external tools, so it is easy to adapt to new versions
or substitutes of these tools.

PRGA is modularized and extensible. Both PRGA Builder
and the PRGA Tool Chain are composed of many fine-grained

Fig. 1. PRGA Workflow: PRGA Builder generates RTL and other files needed by the PRGA Tool Chain for a custom FPGA; the PRGA Tool Chain generates
the bitstream for a given target design for an FPGA built with the PRGA Builder.

steps, and users may deviate from the flow in any step, make
changes, then merge back. This allows PRGA users to further
customize the behavior of PRGA and achieve their custom
goals. It’s also welcomed for potential contributors to add
additional or alternative steps to the flow.

The following are our key contributions:
1) Creation and release of a highly customizable, scalable,

and complete framework for building and using custom
FPGAs.

2) Description of the PRGA workflow and the extensibility
available at every step of the flow.

3) Presentation of an end-to-end use case of the framework,
showing its customizability and extensibility.

PRGA is released and available for download at
https://github.com/PrincetonUniversity/prga. More details
about PRGA can be found at https://prga.rtfd.io.

II. FPGA BACKGROUND

A. FPGA Architecture

Almost all modern FPGAs are island-style, that is, or-
ganized in a two-dimensional array of configurable logic
blocks (CLB) and IO blocks (IOB), as shown in Fig. 2.
Each CLB/IOB may contain multiple look-up tables (LUT),
flipflops, and/or other IP cores such as block RAMs (BRAM)
and DSPs. The connections between these logic elements are
controlled by configuration circuitry that can be reprogrammed
for different applications. Between the blocks run plentiful
wiring resources (1© in Fig. 2), which can be connected to
CLB/IOBs through connection blocks (CB, 2© in Fig. 2) or
connected to other wire segments through switch blocks (SB,
3© in Fig. 2). The manner that these connections are made are

controlled by configuration circuitry.

Fig. 2. Island-style FPGA Layout: FPGA is organized as a 2D array
of CLB/IOBs and wire segments (1©). Wire segments are connected to
CLB/IOBs (2©) or other wire segments (3©) via configurable switches.

B. Tool Chain

To implement a target RTL design, FPGA programmers
need to run a series of CAD tools to generate the bitstream file
that programs the FPGA, similar to compiling a C program
into an executable binary, only more complex. The minimum
set of CAD tools needed are: a synthesis tool which translates
RTL into gates; a packing tool which packs gates into CLBs;
a place & route tool which places CLBs at physical locations
and uses wire segments to connect them; a bitstream gener-
ator which combines the outputs from the tools above and

generates the final bitstream file.

III. RELATED WORK

A. Open-source/Academic FPGA

Although there are no end-to-end, open-source framework
for easily building and using custom FPGAs, there have been
a few previous academic attempts on building non-commercial
FPGAs. Chaudhuri et al. [6] successfully embedded a small
8x8 FPGA into a SoC, but this embedded FPGA is not
customizable. Liu [7] developed a minimally customizable
FPGA with tool support, yet the workflow is relatively rigid
and inextensible. Tang et al. [8] focused on generating accurate
SPICE models for FPGAs described in VTR, which does
not produce synthesizable RTL. Grady et al. [9] modeled a
Stratix IV-style synthesizable heterogeneous FPGA by extend-
ing VTR [4], and they adopted a similar approach to this work
by generating synthesizable RTL for the custom FPGA and
providing support all the way to bitstream generation.

B. Open-source CAD tools for FPGA

On the software-side of the FPGA ecosystem, academia
and the open-source community have achieved much greater
success.

1) Logic Synthesis: There are quite a few successful open-
source/free logic synthesis tools available now. Yosys [3] and
ODIN II [2] are two stable and reliable examples, both based
on ABC [1]. Yosys supports more up-to-date HDL standards
such as Verilog-2005 and has an active community maintaining
it. ODIN II is the default logic synthesis tool in VTR [4].

2) Pack, Place, & Route: Two place & route tools are
popular among FPGA fans: VPR [4] and next-pnr [5]. VPR
is the core component of VTR. It was started a decade ago
and is still actively developed by a team of maintainers. Next-
pnr (preceded by arachne-pnr) is an emerging alternative to
VPR. Both of them have been tested in a few open-source
projects aimed at customizing the RTL-to-bitstream flow for
commercial FPGAs.

3) Complete CAD Flow Targeting Commercial FPGAs:
Academia and the open-source community have devoted great
efforts revealing the logical architecture and configuration file
formats of commercial FPGAs. Torc [10] reverse engineered
the configuration files and bitstream format of multiple Xilinx
FPGAs including all Virtex, Virtex E, Virtex 2, Virtex 2
Pro, Virtex 4, Virtex 5, Virtex 6, Virtex 6L, Spartan 3E,
Spartan 6, and Spartan 6L devices, making fine-grained cus-
tom configuration possible. Verilog-to-bitstream [11], [12] is
an extension to VTR which can generate bitstream for a
specific Xilinx Virtex 6 FPGA. More projects followed the
methodology and achieved great success, including Project
IceStorm [13] targeting Lattice iCE 40 FPGA, Project X-Ray
[14] targeting Xilinx 7-series FPGAs, and Project Trellis [15]
targeting Lattice ECP5 FPGA.

IV. PRGA BUILDER

A. Overview

width, height = 6, 6
arch = ArchitectureContext(width, height)
create routing resources
arch.create_segment(name='L1', width=4, length=1)
... # add more wire segment types
arch.create_global(name='clk', is_clock=True)
create CLB
clb = arch.create_logic_block(name='CLB')
add ports to the CLB
clb.add_input(name='I', width=4, side=Side.left)
clb.add_output(name='O', width=1, side=Side.right)
clb.add_clock(name='CLK', side=Side.bottom,

global_='clk')
add sub-instances to the CLB
clb.add_instance(name='LUT', model='lut4')
clb.add_instance(name='FF', model='flipflop')
add connections
clb.add_connections(clb.ports['I'],

clb.instances['LUT'].pins['in'])
clb.add_connections(clb.instances['LUT'].pins['out'],

clb.instances['FF'].pins['D'])
... # add more connections to CLB
create IOBs
for side in Side.all():

io = arch.create_io_block(
name='IO_'+side.name.upper())

... # add ports, instances, and connections to IOB
place CLB/IOBs
arch.array.place_blocks(block='CLB',

x=1, y=1, endx=width-1, endy=height-1)
arch.array.place_blocks(block='IO_LEFT',

x=0, y=1, endy=height-1)
... # place more blocks
bind global wire to a specific IOB
arch.globals['clk'].bind(0, 1, 0)
populate routing resources
arch.array.populate_routing_channels()
arch.array.populate_routing_switches(

default_fc=(0.25, 0.5))
run passes
flow = Flow(arch)
os.mkdir('rtl')
flow.add_pass(VerilogGenerator('rtl'))
flow.add_pass(VPRArchdefGenerator(

open('archdef.vpr.xml', 'w')))
... # add more passes
flow.run()

Listing 1: Building a simple FPGA with the PRGA Builder

PRGA Builder is the front-end of PRGA, consisting of a
set of Python APIs for users to describe and build their own
custom FPGAs. Code listing 1 shows a simple example that
builds a small FPGA with 32 LUT4s and 32 flipflops using
the PRGA Builder API.

B. Architecture Description

The API for architecture description is designed with the
following goals:

• Versatility: The API is easy to use when describing
simple FPGAs, but also highly customizable, capable of
describing advanced or even commercial-class FPGAs.
This is achieved by providing reasonable default values
for the large amount of customizable properties of the
FPGAs.

• Scalability: Modern FPGAs can be as large as billions
of logic elements. The API is designed to scale to that

level and remain customizable.
The rest of this section covers the architecture description

API step by step.
1) Configurable Logic Block: PRGA Builder supports

highly customized CLB/IOB structures. Users are free to
add any number of LUTs, flipflops, custom IP cores, or
any combination of them to a CLB/IOB, then add arbitrary
configurable connections between these logic elements. After
describing a CLB/IOB, MUXes can be automatically created
with a simple command.

2) Grid Layout: PRGA Builder allows users to create any
number of different CLB/IOB structures, as well as CLBs
with different sizes. After describing all different CLB/IOB
structures, users are provided with a few simple commands to
lay out the blocks into a 2D grid.

3) Routing Resources and Switches: Two types of routing
resources are supported: wire segments and global wires.
PRGA Builder enables very fine-grained customization of
routing switches. Users can place different connection/switch
blocks at different positions, and these blocks may have very
different routing patterns.

4) Performance Concerns: PRGA Builder is implemented
in pure Python. We chose Python because it’s portable, ex-
pressive, standardized, and simple, making PRGA Builder
more accessible to users. However, Python is neither a high-
performance nor a memory-efficient programming language.
In order to achieve high scalability, especially with respect
to memory, PRGA Builder leverages the regularity in FPGAs
as much as possible. The internal data of PRGA Builder can
be serialized using Python’s pickle module, enabling data
reuse and the development of external tools.

C. Building Passes

After users are done describing their custom FPGAs, the
rest of PRGA Builder is organized as Passes. A pass may
modify the FPGA architecture, perform some optimization,
or generate files. Users can choose any passes they need,
pause before any pass, or implement their own passes. Passes
necessary for generating all files required by the PRGA Tool
Chain are: configuration circuitry injection, RTL generation,
timing analysis, VPR input files generation, and configuration
database generation. The rest of this section discusses all these
passes in detail.

1) Configuration Circuitry Injection: The configuration cir-
cuitry injection pass automatically injects configuration cir-
cuitry into CLB/IOBs, connection blocks, and switch blocks.
By design, PRGA Builder can be easily extended to support
different types of configuration circuitry. For now, the only
supported configuration circuitry type is a serial flip-flop chain.
Note that for each configuration circuitry type, a corresponding
configuration database schema and a bitstream generator must
be implemented. The former is discussed in section IV-C5,
and the later is discussed in section V-D.

2) RTL Generation: The RTL generation pass generates
RTL for the CLB/IOBs, connection blocks, switch blocks, the
top-level module of the FPGA, as well as all logic elements,

MUXes, configuration circuitry components, etc., except for
user-defined IP cores, for which users must provide their own
RTL that matches their description. This pass uses Jinja2
[16], a text templating framework, and users may write their
own templates to customize RTL generation. For now, RTL is
generated in Verilog under the Verilog-2005 standard.

3) Timing Analysis: Timing information of all the logic
elements and switches is required for the place & route tool
to correctly implement a target RTL design, yet the timing
information is only available after executing the ASIC flow.
Unfortunately, due to licensing and complexity reasons, the
ASIC flow cannot be distributed with the PRGA framework
and must be completed by the users themselves, using sample
scripts we provide that use commercial CAD tools such as
Synopsys DC/ICC. PRGA Builder provides a timing engine
base class for users to implement their own timing information
extraction mechanism. For logic verification-only use cases
where real timing information is not necessary, PRGA Builder
includes a random timing information generator, which gener-
ates random numbers within a given range, so that users can
run the entire PRGA framework without having access to any
ASIC flow.

4) VPR Input Files Generation: The PRGA Tool Chain
uses VPR for pack, place, & route, which requires an architec-
ture description file, arch.xml, and takes an optional routing
resource graph description file, rrgraph.xml, as input. These
files can be generated by the PRGA Builder with one simple
command.

5) Configuration Database Generation: PRGA Bitgen
needs detailed information about the configuration circuitry
in order to translate VPR’s pack, place, & route results
into bitstreams. The configuration database generation pass
generates a database file in Protocol Buffers [17] so as to
pass the information from PRGA Builder to PRGA Bitgen.
We chose Protocol Buffers because it is a stable, compact,
and cross-language data serialization format with enforced
data schema, so PRGA developers don’t need to worry about
validation, data layout, etc. when implementing different types
of configuration circuitry.

6) Optimization: Besides the necessary passes mentioned
in the sections above, optional optimization passes can be
added to optimize or customize FPGAs. For example, PRGA
Builder includes an optimization that inserts buffers that
disable all top-level outputs during FPGA configuration.

7) Performance Concerns: Similar to the discussion in sec-
tion IV-B4, all building passes are optimized for scalability. All
passes that generate files periodically free temporary data and
flush rendered text onto disk so as to reduce memory usage.
This is critical especially for generating VPR’s rrgraph.xml,
which grows quickly as the size of the FPGAs gets larger.

V. THE PRGA TOOL CHAIN

A. Overview

The PRGA Tool Chain wraps a series of open-source tools
and provides a complete RTL-to-bitstream flow for FPGAs
built with the PRGA Builder.

Fig. 3. Runtime Breakdown, Memory Usage and the Size of the Files Generated by the PRGA Builder

B. Synthesis

By default, the PRGA Tool Chain uses Yosys for synthesis,
but users are allowed to use any flattened, synthesized circuit
in BLIF format instead.

C. Pack, Place, & Route

For pack, place, & route, the PRGA Tool Chain uses
VPR. However, unlike many of its predecessors, the PRGA
Tool Chain does not modify VPR, but only runs VPR with
command line arguments and input files generated by the
PRGA Builder. By staying decoupled from VPR, the PRGA
Tool Chain can utilize every improvement or new functionality
of newer versions of VPR. PRGA is using an up-to-date
version of VPR on its development trunk, and will move to
VPR 8 as soon as it is released.

D. PRGA Bitgen

Since bitstream format is dependent on the configuration cir-
cuitry, generic bitstream generation is not feasible. Therefore,
we developed PRGA Bitgen, a C++ framework for creating
bitstream generators specifically for FPGAs built with the
PRGA Builder. Bitstream generators created with PRGA Bit-
gen are able to combine the configuration database generated
by the PRGA Builder, the synthesis result generated by Yosys,
and the pack, place, & route results generated by VPR, in order
to generate bitstreams. For now, only one bitstream generator
for a serial flipflop-chain type configuration is included in the
PRGA Tool Chain.

VI. EVALUATION

A. Case Study: BCD2BIN Converter

We have verified the complete PRGA flow with a few target
RTL designs. One of them is a BCD2BIN converter which

includes a 3-stage FSM, a 4-bit counter, multiple shifters
and combinational logic units, covering many fundamental
components used in digital circuits. Two different FPGAs are
built for this design, both containing 72 LUT4s, 72 flipflops,
one clock tree, and 23 general-purpose, bi-directional I/O pins.
The only difference is in the routing resources: in one FPGA,
all wire segments are 1 tile long, while in the other FPGA, a
small quantity of the wire segments are 2 tiles long, so that
they are able to connect more CLB/IOBs via less switches,
resulting in better timing.

The PRGA Tool Chain is used to generate the bitstream
implementing the target design. A wrapper module with con-
figuration loading logic is created for simulation purpose. We
use Synopsys VCS to simulate both the target design and the
FPGA implementing the target design. Our simulation shows
that the complete PRGA flow is capable of generating RTL
that can be simulated for custom FPGAs, as well as producing
bitstreams that implement custom designs on the generated
FPGAs.

B. Runtime, Memory and Disk Usage of the PRGA Builder

We built FPGAs of different sizes with the PRGA Builder
using one core of a 2.5GHz Intel Ivy Bridge Xeon E5-2670 v2
processor. We measured the runtime, memory and disk usage
of the PRGA Builder. The CLB/IOB structure, layout, and
wire segment-to-CLB ratio are the same for all the FPGAs,
so that the size of the FPGA can be represented by the total
number of logic elements.

Fig. 3 shows how runtime, memory usage, and the size of
the files generated by the PRGA Builder scale as the size
of the FPGAs becomes larger. The runtime scales linearly
with the total number of logic elements The most time-
consuming passes are the rrgraph.xml generation and configu-

ration database generation passes. These are inevitable because
one XML element is required for each wire segment and
each programmable switch in rrgraph.xml. The configuration
database has similar requirements because it is used to parse
VPR’s outputs.

The memory usage consists of two parts: a fixed memory
overhead of the Python interpreter and imported libraries, and
the memory usage of the PRGA Builder. Although the memory
usage of PRGA Builder inevitably scales linearly with the
number of logic elements, it grows much slower than the lines
of code generated and the size of files written on disk.

VII. ENABLED APPLICATIONS

We hope PRGA can enable many research directions by
providing FPGA researchers/programmers the ability to build
and use their own custom FPGAs. Two possible applications
of PRGA are listed below, but they are just a small set of all
potential applications.

A. Exploring FPGA Architectures

Is LUT6 the best size? What should be the best ratio of
BRAMs and LUT/flipflops? How many wire segments are
optimal given an FPGA architecture? There is still plenty of
space left for optimization in the design space of FPGAs. By
generating many FPGA designs using PRGA and evaluating
these designs, researchers may gain some insight and answer
these questions.

B. Specialized FPGAs

Between FPGAs and domain-specific accelerators, is there
any possibility for a new type of architecture which balances
programmability and performance? Some may think of coarse-
grained gate arrays (CGRA), which resemble FPGAs in which
the majority of logic elements are arithmetic IP cores. How
should FPGA tool chains be modified to program CGRAs?
This can be answered with FPGAs built with PRGA.

VIII. FUTURE WORK

PRGA is still under development, so many features and
functionalities are not implemented or perfected yet. This
section discusses two of the most important works in progress.

A. Implementation with ASIC Flow

As discussed in section IV-C3, the ASIC Flow is not
distributed with the PRGA framework. However, it is nec-
essary to verify that the RTL generated by PRGA Builder is
suitable for the ASIC Flow. Kim et al. [9] discussed a few
challenges when implementing an FPGA using standard cell
library methodology, such as inevitable combinational loops
of wire segments. The RTL generation pass is designed with
this in mind so that the RTL generated is synthesizable and
hierarchical. Our next step is to run the complete ASIC Flow
and tape out some FPGAs built with the PRGA Builder.

B. Other Configuration Circuitry Types

A serial flipflop chain is a good, simple, proof-of-concept
type of configuration circuitry, but it is inefficient with regard
to area and power. Our next step is to add other configuration
circuitry types, for example latch array-based configuration
circuitry.

IX. CONCLUSION

In this paper, we presented PRGA, a highly customizable,
scalable, and complete open-source framework for building
and using custom FPGAs. The front-end of PRGA, the PRGA
Builder, and the back-end of PRGA, the PRGA Tool Chain, are
introduced in detail. Preliminary results show that the runtime
of the PRGA Builder scales linearly with the total number of
logic elements and wiring resources, and the memory usage
grows very slowly as the FPGA becomes larger.

REFERENCES

[1] B. L. Synthesis and V. Group, “ABC: A System for Sequential Syn-
thesis and Verification, Release 70930.” http://www.eecs.berkeley.edu/
∼alanmi/abc/.

[2] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “ODIN II - An
Open-Source Verilog HDL Synthesis Tool for CAD Research,” in 2010
18th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, pp. 149–156, May 2010.

[3] C. Wolf, “Yosys Open SYnthesis Suite.” http://www.clifford.at/yosys/.
[4] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, pp. 6:1–
6:30, July 2014.

[5] YosysHQ, “next-pnr.” https://github.com/YosysHQ/nextpnr, 2018.
[6] S. Chaudhuri, S. Guilley, F. Flament, P. Hoogvorst, and J.-L. Danger,

“An 8x8 Run-time Reconfigurable FPGA Embedded in a SoC,” in
Proceedings of the 45th Annual Design Automation Conference, DAC
’08, (New York, NY, USA), pp. 120–125, ACM, 2008.

[7] H. J. Liu, “Archipelago - An Open Source FPGA with Toolflow
Support,” Master’s thesis, EECS Department, University of California,
Berkeley, May 2014.

[8] X. Tang, P. Gaillardon, and G. D. Micheli, “FPGA-SPICE: A simulation-
based power estimation framework for FPGAs,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD), pp. 696–703,
Oct 2015.

[9] B. Grady and J. H. Anderson, “Synthesizable Heterogeneous FPGA
Fabrics,” in 2018 International Conference on Field-Programmable
Technology (FPT), pp. 225–232, Dec 2018.

[10] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-source Tool Flow,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’11, (New York, NY, USA), pp. 41–44, ACM, 2011.

[11] R. K. Soni, N. Steiner, and M. French, “Open-Source Bitstream Gen-
eration,” in 2013 IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 105–112, April 2013.

[12] E. Hung, F. Eslami, and S. J. E. Wilton, “Escaping the Academic
Sandbox: Realizing VPR Circuits on Xilinx Devices,” in 2013 IEEE
21st Annual International Symposium on Field-Programmable Custom
Computing Machines, pp. 45–52, April 2013.

[13] C. Wolf and M. Lasser, “Project IceStorm.” http://www.clifford.at/
icestorm/.

[14] SymbiFlow, “Project X-Ray.” https://github.com/SymbiFlow/prjxray,
2018.

[15] SymbiFlow, “Project Trellis.” https://github.com/SymbiFlow/prjtrellis,
2018.

[16] A. Ronacher, “Jinja2.” http://jinja.pocoo.org/, 2014.
[17] Google, “Protocol Buffers.” https://developers.google.com/

protocol-buffers/.

